Here are some quick references to Python Dictionaries and Panda include
#Dictionaries #Create cities_in_europe = {'spain':'madrid', 'france':'paris', 'germany':'berlin', 'norway':'oslo' } #Read value back cities_in_europe['france'] #Add to Dictionaries cities_in_europe['italy'] = 'venice' #Change a value cities_in_europe['italy'] = 'rome' #"key" in dicarr 'italy' in delcities_in_europe #-> returns true #delete a key del(cities_in_europe['italy']) print(cities_in_europe) #N Dimention Dictionaries europe = { 'spain': { 'capital':'madrid', 'population':42.33 }, 'france': { 'capital':'paris', 'population':63.02 }, 'germany': { 'capital':'berlin', 'population':78.62 }, 'norway': { 'capital':'oslo', 'population':8.078 } } #Get Single value europe['france']['capital'] europe['france']['population'] # Print out the capital of France print(europe['france']['capital']) # Add One more Element data = {'capital':'rome','population':59.83} # Add data to europe under key 'italy' europe['italy'] = data #Add in one line europe['england'] = {'capital':'london','population':78.88} # Print europe print(europe)
Pre Defined Lists
# Pre-defined lists names = ['United States', 'Australia', 'Japan', 'India', 'Russia', 'Morocco', 'Egypt'] dr = [True, False, False, False, True, True, True] cpc = [809, 731, 588, 18, 200, 70, 45] import pandas as pd my_dict = {'country':names , 'drives_right':dr , 'cars_per_cap':cpc } # Build a DataFrame cars from my_dict: cars cars = pd.DataFrame(my_dict) print(cars) row_labels = ['US', 'AUS', 'JAP', 'IN', 'RU', 'MOR', 'EG'] # Specify row labels of cars cars.index = row_labels print(cars)
Panda from CSV File
———- CVS FILE ————–
,country,capital,area,population
BR,Brazil,Brasilia,8.516,200.4
RU,Russia,Moscow,17.10,143.5
IN,India,New Delhi,3.286,1252
CH,China,Beijing,9.597,1357
SA,South Africa,Pretoria,1.221,52.98
import pandas as pd brics = pd.read_csv("path/to/brics.csv", index_col = 0) print(brics) Column and Row Access print(brics['country']) print(type(brics['country'])) #Gives you <class 'pandas.core.series.Series'> print(brics[['country']]) print(type(brics[['country']])) #Gives you <class 'pandas.core.frame.DataFrame'> #Two Columns print(brics[['country','capital']]) #Row Access brics[0:3] # Rows 0,1,2 brics[3:6] # Rows 3,4,5 #loc and iloc brics.loc['RU'] #Selects row for RU brics.iloc[1] brics.loc[['BR','SA']] #Selects ROW BR and SA brics.iloc[[0,4]] #Select Area for SA brics.loc['SA','area']) # Capital and area for SA and RU brics.loc[['SA','RU'],['capital','area']]) brics.loc[['RU','MOR'],['country','area']] #Combine loc and iloc using ix brics.ix[[4,5],['country','capital']] brics.ix[4:6,['country','capital']] #Slice-ing loc brics.loc[:,'area']) #As Series brics.loc[:,['area']]) #As DataFrame brics.loc[:,['area','capital']]) #As DataFrame Area , Capital