Python Dictionaries and Panda

Here are some quick references to Python Dictionaries and Panda include

#Dictionaries
#Create
cities_in_europe = {'spain':'madrid', 'france':'paris', 'germany':'berlin', 'norway':'oslo' }

#Read value back
cities_in_europe['france']

#Add to Dictionaries
cities_in_europe['italy'] = 'venice'

#Change a value
cities_in_europe['italy'] = 'rome'

#"key" in dicarr
'italy' in delcities_in_europe #-> returns true

#delete a key
del(cities_in_europe['italy'])

print(cities_in_europe)

#N Dimention Dictionaries
europe = { 'spain': { 'capital':'madrid', 'population':42.33 },
'france': { 'capital':'paris', 'population':63.02 },
'germany': { 'capital':'berlin', 'population':78.62 },
'norway': { 'capital':'oslo', 'population':8.078 } }

#Get Single value
europe['france']['capital']
europe['france']['population']

# Print out the capital of France
print(europe['france']['capital'])

# Add One more Element
data = {'capital':'rome','population':59.83}

# Add data to europe under key 'italy'

europe['italy'] = data

#Add in one line
europe['england'] = {'capital':'london','population':78.88}

# Print europe

print(europe)
Pre Defined Lists
# Pre-defined lists
names = ['United States', 'Australia', 'Japan', 'India', 'Russia', 'Morocco', 'Egypt']
dr = [True, False, False, False, True, True, True]
cpc = [809, 731, 588, 18, 200, 70, 45]

import pandas as pd

my_dict = {'country':names ,
'drives_right':dr ,
'cars_per_cap':cpc }

# Build a DataFrame cars from my_dict: cars

cars = pd.DataFrame(my_dict)
print(cars)

row_labels = ['US', 'AUS', 'JAP', 'IN', 'RU', 'MOR', 'EG']

# Specify row labels of cars

cars.index = row_labels

print(cars)
Panda from CSV File

———- CVS FILE ————–
,country,capital,area,population
BR,Brazil,Brasilia,8.516,200.4
RU,Russia,Moscow,17.10,143.5
IN,India,New Delhi,3.286,1252
CH,China,Beijing,9.597,1357
SA,South Africa,Pretoria,1.221,52.98


import pandas as pd

brics = pd.read_csv("path/to/brics.csv", index_col = 0)
print(brics)

Column and Row Access
print(brics['country'])
print(type(brics['country']))
#Gives you <class 'pandas.core.series.Series'>

print(brics[['country']])
print(type(brics[['country']]))
#Gives you <class 'pandas.core.frame.DataFrame'>

#Two Columns
print(brics[['country','capital']])

#Row Access
brics[0:3] # Rows 0,1,2
brics[3:6] # Rows 3,4,5

#loc and iloc
brics.loc['RU'] #Selects row for RU
brics.iloc[1]
brics.loc[['BR','SA']] #Selects ROW BR and SA
brics.iloc[[0,4]]

#Select Area for SA
brics.loc['SA','area'])

# Capital and area for SA and RU
brics.loc[['SA','RU'],['capital','area']])
brics.loc[['RU','MOR'],['country','area']]
#Combine loc and iloc using ix
brics.ix[[4,5],['country','capital']]
brics.ix[4:6,['country','capital']]

#Slice-ing loc
brics.loc[:,'area']) #As Series
brics.loc[:,['area']]) #As DataFrame
brics.loc[:,['area','capital']]) #As DataFrame Area , Capital

Leave a Reply

Your email address will not be published. Required fields are marked *


CAPTCHA Image
Reload Image